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A general formulation of optimal control theory for open quantum systems �quantum subsystems� based on
a superoperator method is presented. This approach is applied to a computation of optimized time-dependent
fields for solid-state-based realizations of quantum gates. Decoherence is incorporated within the spin-boson
model and treated within, essentially, the Bloch-Redfield formalism. Generating a “decoherence-free subspace”
for the superoperator dynamically, we identify optimal trajectories in the phase space of the dynamical system
for one- and two-qubit subsystems. Numerical analysis shows that, for the ideal case where one has full control
over the subsystem’s Hamiltonian, any gate operation can be realized with arbitrary small loss of coherence
due to dephasing and optimal solutions exist which are independent of both spectral density and the tempera-
ture of the environment. At the example of a Josephson charge quantum gate we study the more realistic
situation where one has a restricted number of control fields which, while providing a universal gate, cannot
completely eliminate dephasing.
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I. INTRODUCTION

An essential prerequisite for quantum computation is pre-
cise coherent control of quantum two-level systems, so-
called qubits. Several proposals for solid-state-based quan-
tum gate realizations, such as quantum dots or
superconducting quantum interference devices �SQUIDs�,
have been made and qubits, as well as coupled qubits �quan-
tum gates�, have been investigated both theoretically and
experimentally.1–19 Any realization of a quantum gate, how-
ever, is a quantum subsystem. Coherent manipulation of the
quantum gate is disturbed by unwanted interaction with its
environment, ultimately leading to decoherence and dissipa-
tion. It is thus an important task to find ways to minimize or
even eliminate this interaction in order to maintain coherent
quantum dynamics for as long as it is necessary to perform
the calculation. Apart from design optimization there is an
approach of minimizing decoherence in quantum subsystems
by selecting optimal pulse shapes for the external control
within experimental capabilities. To find such time-
dependent control fields theoretically, one may resort to op-
timal control theory.20 Target state preparation of a quantum
system evolving out of a specific initial state, for example the
system’s ground state, has been well investigated with appli-
cations throughout quantum physics.21–27

The situation becomes demanding when one considers a
quantum subsystem. Quantum computation, moreover, re-
quires state-independent control when a quantum gate opera-
tion is to be executed.28–32 Important progress has been made
in the study of unitary operations in isolated systems.33–36

The temporal evolution of such systems is fully character-
ized by the unitary time-evolution operator. For dissipative
quantum systems, the superoperator approach provides a
natural formalism to describe state-independent
transformations.37 In this paper we therefore formulate the
optimality condition for steering a quantum subsystem in
terms of the time-evolution superoperator.

This paper is organized as follows. In Sec. II we formu-
late the general superoperator approach. The optimal control

problem in terms of the time-evolution superoperator and the
cost functional are formulated in Sec. III. In Sec. IV the
spin-boson model is incorporated into this superoperator for-
mulation within second-order perturbation theory in the spin-
boson interaction �Bloch-Redfield approach�. In Sec. V we
map single and double Josephson charge qubits onto the
spin-boson model and study them numerically. Dynamical
generation of decoherence-free subspaces for one- and two-
qubit systems is explored. Numerical examples for coupled
qubits are given both for idealized and realistic control situ-
ations. Conclusions and relevance of this work for experi-
ment are given. Section VI gives a summary of the main
aspects of the paper. Technical details regarding perturbation
theory for the superoperator and the definition of the deco-
herence function are summarized in Appendixes A and B.
Throughout the paper we use the Einstein summation con-
vention.

II. GENERAL APPROACH

The kinetic equation for the density matrix of a subsystem
��t� interacting with an environment is of the general form

i��̇ = �H�t�,�� + D�t,��, ��0� = �0. �1�

The time-dependent Hamiltonian H�t� of the subsystem con-
tains the external control fields � j�t� and the dissipator
D�t ,�� accounts for the interaction between system and
environment.38 In general the dissipator is time-dependent
and may depend on the control fields � j�t�. Within the super-
operator formalism, Eq. �1� takes the form

i��̇�t� = �L�t� + D�t����t� . �2�

Here L�t���t���H�t� ,��t�� is the Liouville superoperator
and D�t���t��D�t ,�� is the dissipation superoperator. To ob-
tain a state-independent formulation we introduce the time-
evolution superoperator X�t� defined through
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��t� = X�t���0� . �3�

With this ansatz we enter Eq. �2� to obtain the equation of
motion for X�t�,

i�Ẋ�t� = �L�t� + D�t��X�t�, X�0� = 1L. �4�

1L is the unit operator in the superoperator space. The formal
solution is provided by

X�t� = T← exp�−
i

�
�

0

t

�L�t�� + D�t���dt�� , �5�

where T← denotes the chronological time-ordering operator
which orders products of time-dependent �super� operators
such that their time arguments increase from right to left. In
the absence of dissipation the superoperator X�t� is deter-
mined by the unitary time-evolution operator of the system
U�t�=T← exp	− i

�
0
t H�t��dt��, viz.

Xijrs�t� = Uir�t�Usj
† �t� . �6�

III. SUPEROPERATOR FORMULATION OF THE
OPTIMIZATION PROBLEM

Let O be the desired target operation, specified up to a
global phase, which is to be executed during the time interval
�0, tf� and completed at target time tf. The target state for any
valid initial state ��0� of the subsystem is thus

��tf� = O��0�O†. �7�

The target superoperator XT has the form

XT�ijrs � OirOsj
† .

For a purely coherent dynamics �isolated quantum system�
one obtains the condition for U�tf�

Xijrs�tf� = Uir�tf�Usj
† �tf� = XT�ijrs. �8�

Per definition, complete control over the isolated quantum
system implies that this inverse problem can be solved and at
least one set of control fields that meets this condition exists.
For a quantum subsystem, the dissipator in Eq. �4� in general
does not allow to reach the target superoperator XT exactly.
Based on Eq. �8�, however, we define a cost functional with
the goal to arrive at the target superoperator XT as accurately
as possible,

J = 
X�tf� − XT
2 � �
p,q,m,j

�Xpqmj�tf� − OpmO jq
† �2 → min.

�9�

To minimize J, a variation in the external control contained
in H�t� needs to be performed. The optimization of the cost
functional �9� is a standard inverse problem in optimal con-
trol theory.20

Without dissipation and using the expression Eq. �6� we
obtain28 for Eq. �9�

Ju = N −
1

N
�Tr	U�tf�O+��2. �10�

Here N is the dimension of the Hilbert space. We note that
Eq. �9�, as well as Eq. �10�, is insensitive to a potential phase
difference between O and U�tf�.

In earlier work26,39 on weakly dissipative quantum sys-
tems we have used, in addition to terms similar to Eq. �10�,
the contribution

JD = �Tr	��I�tf� − ��0��2�� �11�

to account for dissipation during quantum gate operation
within first-order perturbation theory, leading to a cost func-
tional JuD=Ju+JD. JD measures, in the interaction picture,
the deviation of the initial state from the final state. In the
absence of the dissipator, all initial states remain constant in
time �I�tf�=��0�. One can show that Eq. �9� contains Eqs.
�10� and �11�.

IV. SUPEROPERATOR FORMALISM FOR THE SPIN-
BOSON MODEL: BLOCH-REDFIELD DISSIPATOR AND

KINETIC EQUATIONS

The spin-boson model is a widely used and thoroughly
investigated system to describe dissipation and decoherence
in open quantum systems.38,40–42 It has been used frequently
to model solid-state realizations of elementary quantum sys-
tems for quantum computation purposes.17,42 We therefore
adopt this model and subject it to the superoperator optimi-
zation formalism outlined above, whereby the dissipator is
computed within second order in the spin-boson interaction.

A. Hamiltonian of the system

To describe a qubit system, we use the computational ba-
sis �orthonormal states� 	�1� , �2�� for one qubit and the prod-
uct states �1��1���1�, �1��2���2�, �2��1���3�, and �2��2�
��4� for two qubits. The total Hamiltonian is given by

HT = H�t� + �
�=1

W

HB
� + HI. �12�

Here H�t� is the time-dependent control Hamiltonian of the
system and HB

� are the Hamiltonians of the reservoirs. In the
notation of second quantization, HB

� takes the form

HB
� = �

q
��q

��bq
��†bq

�. �13�

�bq
��† and bq

� are creation and annihilation operators of the
bath � and the oscillator mode q with frequency �q

�, respec-
tively. W in Eq. �12� takes the values 1 for a single bath and
2 for two uncorrelated baths. The interaction Hamiltonian HI
for one single qubit is of the form

HI = �z � �
q

gq�bq
† + bq� . �14�

gq is the coupling constant of mode q. For the two-qubit case
we have
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HI = �A1 + A2� � �
q

gq�bq
† + bq� , �15�

when both qubits are coupled to the same bath and

HI = �
�=1

2

A� � �
q

gq
���bq

��† + bq
�� , �16�

when the qubits are coupled to two distinct reservoirs. We
use A1=�z � 1 and A2=1 � �z for system operators. gq

� are the
relevant coupling constants. Thus we model an environment
which causes pure dephasing in the computational basis. In
fact, dephasing has been identified as the primary problem
for Josephson-junction-based qubit realizations.18

B. Dissipation within the Bloch-Redfield superoperator

The Bloch-Redfield relaxation tensor �dissipation super-
operator� is given by41

Rijkl�t� = �lj�
r

�irrk
+ �t� + �ik�

r

�lrrj
− �t� − �ljik

+ �t� − �ljik
− �t� ,

�17�

where the rates for two baths �W=2� are43

�ljik
+ �t� =

1

�2Uip�t�Ukq
� �t��

0

t

dt��C1�t − t��Pljmn
�1�

+ C2�t − t��Pljmn
�2� �Unq�t��Ump

� �t�� , �18�

�ljik
− �t� =

1

�2Ulp�t�Ujq
� �t��

0

t

dt��C1�t� − t�Pmnik
�1�

+ C2�t� − t�Pmnik
�2� �Unq�t��Ump

� �t�� . �19�

Here Uip�t� are the components of the unitary time-evolution
operator, obtained by integration of Eq. �29� below, and
C��t� are the system-bath-correlation functions.42 Tracing out
bath � yields

C��t� = TrB�
	B��t�B��0���

B� . �20�

with B�=�qgq
���bq

��†+bq
�� and ��

B as the canonical density
operator of bath �.

The system-reservoir coupling enters in the operators
P���. For a single qubit coupled to one bath we have Pljmn

�1�

= ��z�lj��z�mn and P�2�=0. Using the matrices A1 and A2, we
obtain for two distinct baths, Pljmn

��� = �A��lj�A��mn, whereas for
one common bath Pljmn

�1� = �A1+A2�lj�A1+A2�mn and Pljmn
�2� =0.

We emphasize that we treat the time integrals in the ex-
pressions for the rates �18� and �19� exactly, avoiding the
adiabatic approximation. This makes the problem computa-
tionally more demanding but is essential for obtaining con-
trol over dissipation and our results below. Moreover, we do
not need the assumption of short memory times of the
reservoirs.38 Up to second order in the spin-boson interaction
this approach is equivalent to a full non-Markovian treatment
of the system.44

C. Expansion of the correlation functions into Laguerre
polynomials

We expand the correlation functions using normalized La-
guerre polynomials45 	K�x�=e−x/2LK�x� /K!. In this way we
can treat the integrals over time in Eqs. �18� and �19� in an
efficient way since it allows us to parallelize the system of
equations. If we choose an Ohmic spectral density J����
=
��e−�/�c

�
for all baths, we find for the correlator of Eq.

�20�

C��t − t�� =

���c

��2

�i − �c
��t − t���2

+
2
�

�2��
2 Re����1 + i�c

��t − t��
����c

� �� . �21�

Here ���1 /kT� is the inverse temperature of bath � and
���z� is the derivative of the digamma function. We note that

C��t − t�� = C�
��t� − t� . �22�

For simplicity we choose for both baths identical parameter
sets consisting of cutoff frequency �c, inverse temperature �,
and coupling strength 
. A more general approach is readily
possible but at the expense of cumbersome notation. We de-
fine a dimensionless time 
=�ct. Omitting the index �, we
have for 
−
��0 �see Ref. 46�,

C�
 − 
�� � e−�
−
��/2 �
K=0

Nmax

�
J=0

K

�
L=0

J

aKJL
L
�J−L. �23�

Here Nmax is the number of Laguerre polynomials used to
approximate the correlator. aKJL�cKdKJL are expansion co-
efficients with

dKJL = �− 1�L K!

J ! L ! �K − J� ! �J − L�!
�24�

and

cK = �
0

�

d
	K�
�C�
� . �25�

Equation �23� is not valid for 
−
��0. To evaluate Eq. �19�
we thus use Eq. �22� to obtain the correlator for negative
time arguments.

D. Rates

Insertion of Eq. �23� into Eqs. �18� and �19� gives an
explicit expression for the rates. It is convenient to define the
following time-dependent auxiliary functions:

Gnqmp
M �t� ª ��ct�−Me−�ct/2�

0

t

dt�e�ct�/2��ct��MUnq�t��Ump
� �t�� ,

�26�

where the index M =J−L runs from 0 to Nmax. Using these
functions we obtain for the rates
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�ljik
+ �t� =

1

�2Uip�t�Ukq
� �t��Pljmn

�1� + Pljmn
�2� �

� �
K=0

Nmax

�
J=0

K

�
L=0

J

cKdKJL��ct�JGnqmp
J−L �t� , �27�

and

�ljik
− �t� =

1

�2Ulp�t�Ujq
� �t��Pmnik

�1� + Pmnik
�2� �

� �
K=0

Nmax

�
J=0

K

�
L=0

J

cK
� dKJL��ct�JGnqmp

J−L �t� . �28�

We use the right-hand sides of Eqs. �27� and �28� to compute
the dissipator Eq. �17�.

E. Closed set of kinetic equations

A system of coupled first-order ordinary differential equa-
tions describes the time evolution of the superoperator. It
consists of the Schrödinger equation for the unitary time-
evolution operator

i�U̇�t� = H�t�U�t�, U�0� = 1 . �29�

As follows from Eq. �26�, the auxiliary functions are deter-
mined from

Ġnqmp
M �t� = − �M

t
+

�c

2
�Gnqmp

M �t� + Unq�t�Ump
� �t� ,

Gnqmp
M �0� = 0. �30�

The uppercase index M =0,1 ,2. . . in principle runs up to
infinity, but for our examples convergence practically is
reached for M �8. The components Gnqmp

M �t�, together with
the components of U�t�, determine the Bloch-Redfield relax-
ation tensor Rijmn�t�. Finally, there is an equation of motion
for the components of the time-evolution superoperator,

Ẋijrs�t� = �−
i

�
Lijmn�t� − Rijmn�t��Xmnrs�t� ,

Xijrs�0� = �ir� js. �31�

Here the components of the system’s Liouville superoperator
are Lijmn�t�=Him�t��nj −Hnj�t��im. Equations �29�–�31�
present a closed set of differential equations which may now
be solved efficiently in parallel.

V. NUMERICAL RESULTS

Having in mind solid-state realizations we map the
Hamiltonian for a quantum gate realized by Josephson
charge qubits onto the spin-boson model. Similar mappings
have been performed for realizations of quantum gates via
quantum dots.42 The ideal single Josephson charge qubit is
usually written in the eigenbasis of the Cooper-pair number
operator using two charge states 	�1� , �2�� and is modeled by
the Hamiltonian13

Ho�ng,�� = �
n=1

2

4EC�n − ng�2�n��n� −
1

2
EJ��2��1� + �1��2�� ,

�32�

where EC denotes the single-electron charging energy of the
superconducting island and EJ=EJ��� is the Josephson cou-
pling energy, which is a function of an externally applied
magnetic flux �; ng=

CgVg

2e with Cg and Vg, respectively, de-
noting the gate capacitance and voltage. If the bias Vg is such
that the qubit’s working point is adjusted to a charge degen-
eracy point �ng→ng+ 1

2 �, the effective Hamiltonian in matrix
representation becomes

Ho�ng,�� = −
1

2
EJ����x + 4ECng�z.

In the absence of dissipation, the two control fields �x�t�
=− 1

2EJ���t�� and �z�t�=4ECng�t� allow the execution of ar-
bitrary unitary single-qubit operations. Maintaining �near�
unitary operations in the presence of state leakage and, in
particular, dissipation is difficult.47–49 Josephson charge qu-
bits can be combined to a quantum gate with a Heisenberg-
type qubit-qubit interaction as will be detailed below. In the
absence of dissipation, it has been shown that there exist
solutions for the four control fields such that, in principle,
arbitrary quantum gate operations can be realized with arbi-
trary accuracy.36

We have in mind SQUIDs; however, we try to keep the
discussion as general as possible to maintain relevance for
other physical realizations of quantum gates which can be
mapped on a spin-boson model for dephasing. As preparation
for dealing with quantum gates, we first study the role of the
fields �x and �z when controlling the single qubit individually
and show, within the superoperator formalism, how one can
generate decoherence-free superoperator subspaces dynami-
cally. For the remainder of this section we discuss control of
a quantum gate in presence of dephasing, first for an ideal-
ized control situation and then within experimental means.

A. Single-qubit control

We now discuss the one-qubit case for a system-reservoir
interaction proportional to �z and investigate the control-bath
interaction effects for two important cases, namely, when the
control couples via �z �same direction as the bath� and when
it couples via �x �perpendicular to the system-bath coupling�.
To be able to discuss the effects within analytical expres-
sions, we choose a time-independent control.

1. Control coupling to �z

In the first example we consider a system with Hamil-
tonian

Hz =
��0

2
�z. �33�

We select the level-splitting frequency �0=2�z /� as the only
control corresponding to gate voltage control for SQUIDs to
tune the island’s charging energy. The time-evolution opera-
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tor U�t� and the Bloch-Redfield dissipator are available ana-
lytically. The time-evolution superoperator is obtained within
perturbation theory as explained in Appendix A. Evaluating
the general expression �A5�, we obtain for the nonvanishing
elements

X1111
�1� �t� = X2222

�1� �t� = 1, �34�

X1212
�1� �t� = �X2121

�1� �t��� = e−i�0t��t� . �35�

Here we define

��t� � 1 + 2
�ln�1 + ��ct�2� − 4�0� 1

���c
��

+ 8
 Re��0�1 + i�ct

���c
�� , �36�

and �0�z�� ln ��z�. The real function ��t� reflects the role of
the environment. It is equal to 1 for isolated systems. Using
the projectors P���1 /2��1��z� one can write the superop-
erator components in the limit t→� as

Xijrs�t → �� = �P+�ir�P+�sj + �P−�ir�P−�sj . �37�

In an exact treatment, the elements of Eq. �35� tend to zero.
Thus for t→� every initial state �0 loses its off-diagonal
elements under the action of X �pure decoherence38�. A nu-
merical example is shown in Fig. 1 for illustration.

2. Control coupling to �x

We consider now a tunable coupling between the two ba-
sis states as facilitated by an external magnetic fields for
SQUIDs. The system-control coupling is now proportional to
�x and the system’s Hamiltonian reads

Hx = ��0�x. �38�

Inspection of the Bloch-Redfield dissipator shows that it is
possible to decrease dissipation by applying high �0 values

�dynamic decoupling� as demonstrated numerically in Fig. 2.
In fact the Bloch-Redfield dissipator contains terms such as10

�
0

t

dt�C�t��exp�2i�0t�� , �39�

where C�t�� is the correlation function �21�, which vanishes
for �0 /�c→�. The asymptotic value of the superoperator is
now

Xijrs�t → �� = �ij
eq�rs, �40�

where �eq is the thermal equilibrium state.42 The superopera-
tor projects any initial state �0 into the same final state �eq.
The important lesson from a comparison of these two simple
cases is that the nature of dissipation can be influenced by
external control provided that the control fields couple with
sufficient strength and can be applied on a time scale com-
parable or faster than that characteristic for the bath, i.e.,
1 /�c in our case.

B. Control of quantum gates

1. “Decoherence free subspace” for the superoperator

The lesson learned for single qubits in the presence of
dephasing are now put to use for the control of quantum
gates. The Hamiltonian of Eq. �38� is associated with the
unitary operator UDF�t�=exp�−itHx /�� and allows the reduc-
tion in the influence of the dissipator to arbitrary small val-
ues by increasing the frequency �0. Consider, for example,
two qubits coupled to either two distinct baths or to one
common bath always with a coupling proportional to �z. In
both cases the Hamiltonian

HDF = ��0��x � 1 + 1 � �x� �41�

dynamically generates a time-evolution operator UDF�t�
which, for large values of �0→�, leads to decoherence-free
overall time evolution. As usual, the decoherence-free sub-
space is defined as the set of all quantum states �DF, for
which D�t ,�DF�=0 in Eq. �1� or, equivalently,

FIG. 1. �Color online� Time evolution of the norm 
X
2, where
the control is given by Eq. �33�. The blue �dark gray� solid line
corresponds to the exact �numerical� integration. Perturbation
theory �black dashed line� gives 
�
2=2+��t�2. The cyan �light
gray� dotted-dashed line gives the asymptotic value of the superop-
erator norm. The lower part of the figure shows Re��12�t�� for the
typical time evolution of a state. Parameters used for this calcula-
tion are �c=20�0, ���c=20, and 
=0.01.

FIG. 2. �Color online� Time evolution of the norm 
X
2, where
the control here is given by Eq. �38�. In this case interference ef-
fects allow a decrease in decoherence by increasing �0. The lower
part of the figure shows the time evolution of Tr	��u�t�−��t��2�,
where �u�t� corresponds to the unitary time evolution, for �0=1
�black dotted line� and �0=150 �red �dark gray� solid line�, and
��0�= �1,0 ;0 ,0�. Parameters as in Fig. 1.
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Rijkl�t��kl
DF�t� = 0 ∀ i, j . �42�

It is constructed by dynamical decoupling of the open quan-
tum system.50–52 Following Eq. �6�, we obtain a time-
dependent superoperator Xklrs

DF �t�= �UDF�t��kr�UDF
† �t��sr that

governs the time-evolution of an arbitrary state protected
from environment-induced dissipation

Rijkl�t�Xklrs
DF �t� → 0 ∀ i, j,r,s , �43�

which may be viewed as the condition for defining the
decoherence-free superoperator subspace.

This observation suggests the following control strategy.
If the system is fully controllable �single-qubit operations
plus arbitrary qubit-qubit interaction� each target operator O
can be realized and the optimal trajectory is generated by the
following sequence of unitary operations:

1 = U�0� → UDF�t� → U�tf� = O . �44�

Thus, for sufficiently fast switching ability, we obtain opti-
mal solutions which are: �i� independent of the spectral func-
tion, �ii� independent of the number of uncorrelated baths,
�iii� independent of bath temperature, and �iv� all four gate
quantifiers take the ideal values.53 Because the Hamiltonian
is time dependent, the problem of finding the optimal solu-
tion is best solved numerically.

2. Ideal model with full control

In this subsection we present numerical results within the
strategy presented before. In all examples we study two
coupled qubits and the CNOT-gate54 operation as the target
operator O. Minimization was performed using standard
line-search methods from the MATLAB optimization toolbox.

Our first quantum gate example demonstrates how one
can find numerical solutions for optimal control fields if one
has independent control over the single qubits and the qubit-
qubit interaction. Furthermore, we first assume that there are
no restrictions in the field strengths. To implement the opti-
mal trajectory �44�, it is convenient to split the control
Hamiltonian into two parts:

H�t� = HDF + Hc�t� , �45�

where HDF is given by Eq. �41� with time-independent

��0 = �stat = �
n�

tf
, �46�

where the integer n=0,1 ,2 ,3. . . ensures UDF�tf�=1. We use
n=0 as a reference solution to check the improvement of the
cost functional for increasing n. The second part Hc�t� is
optimized. To find Hc�t� it is sufficient to consider the unitary
problem and to minimize the cost functional �10� because
HDF ensures suppression of dissipation when n is increasing.
We write

Hc�t� = H1�t� + H2�t� + Hqq�t� �47�

with H1�t�= ��z
1�t��z+�x

1�t��x� � 1 and H2�t�=1 � ��z
2�t��z

+�x
2�t��x�. In our example the qubit-qubit interaction is of the

Heisenberg form

Hqq�t� = f�t��
k=1

3

�k � �k, �48�

where the qubit-qubit interaction f�t� is controllable indepen-
dently from the single-qubit control fields �i

j�t�. Without loss
of generality we set �z

1=const. In total there are four inde-
pendent control fields. Each field is expressed as

��t� =
�

tf
�
j=1

F

aj sin� j�
t

tf
� , �49�

and, for F=6,24 coefficients are free for variation.55 The
corresponding time-evolution operator factorizes into U�t�
=UDF�t�Uc�t�. The equation of motion for Uc�t� is simply

i�U̇c�t�=UDF
+ �t�Hc�t�UDF�t�Uc�t�; Uc�0�=1 and Uc�tf�=O.

We minimize the cost functional �10� numerically to deter-
mine the coefficients aj. The convergence of the procedure is
shown in Fig. 3, where we collect data obtained by evaluat-
ing the cost functional �9� for the dissipative system. For
completeness we consider both cases: one common and two
distinct baths. We remark that all computed fields �two sets
are shown in Fig. 4� are “good” unitary solutions. The cost
functional �10� in any case is in the range Ju�10−3–10−4

which is quite sufficient compared to the change in J under
the action of the dissipator. Obviously one can replace the
static field �stat by an appropriate time-dependent field to
fulfill boundary conditions of the control; for example,
�x

1,2�0�=�x
1,2�tf�=0. To obtain the results in Fig. 3 we used

the parameters �ctf =10, 
=10−3, and ���c=20. For tf
=0.5 ns we have a temperature of T�7.6 mK and a decay
rate, given by Eq. �B3�, ��=62.8�106 s−1. This corre-
sponds to a dephasing time T2�1 /�� of the order of 10 ns.
Measured Ramsey dephasing times for coupled SQUIDs are
of the order14 of 200 ns. We note that the cost functional J is
proportional to 
2 for Ju�0 as follows from perturbation
theory �see Appendix B�.

C. Limited control

In experiments there are several restrictions. The most
important one is the limited control over the Hamiltonian.
Two further restrictions lie in the maximal field strength

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

n

0.05

0.15

0.25

J

1 bath

2 baths

FIG. 3. �Color online� The plot shows the convergence of the
cost functional J �Eq. �9�� when n, a measure of the static field
�46�, is increased. The cases of one bath and two baths are
considered.
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which can be realized and the fastest gate operation time. In
general, these constraints hinder a direct realization of the
optimal trajectory �44�. To give a concrete example we con-
sider a register of two charge qubits with tunable qubit-qubit
interaction as discussed by Makhlin et al.13 The control
Hamiltonian for both qubits is given by

H�t� =
1

2
��x

1�t��x � 1 + �z
1�t��z � 1�

+
1

2
��x

2�t�1 � �x + �z
2�t�1 � �z� + Hqq�t� , �50�

where the qubit-qubit interaction has the form36

Hqq�t� = − K�x
1�t��x

2�t��y � �y �51�

with K as a parameter fixed by the inductivity of the inductor
of the register of the coupled qubits. In our numerical com-
putation it is equal 2tf /�. The �x

1,2�t� control of each qubit is
realized by external magnetic fields, whereas �z

1,2�t� is con-
trolled using gate voltages. Even though this qubit-qubit in-
teraction allows a realization of the CNOT gate with negli-

gible error in isolated systems, the situation changes when
dissipation is present and we cannot expect to reach values of
J as low as before. All control fields are expressed as in Eq.
�49� with F=10 variable coefficients. The qubit-qubit inter-
action �51� inhibits reaching the decoherence-free superop-
erator with the control Hamiltonian �41�. We chose therefore
another cost functional with a weight factor � where the
prescription of the trajectory is weakened56

Jlc = Ju + ��
0

tf

dt��N −
1

N
�Tr�U�t��UDF

† �t����2� . �52�

We set �=0.001 in our numerical computations. Again
UDF�t� is the decoherence-free time-evolution operator de-
pending on n through Eq. �46�. All parameters characterizing
the environment are chosen as in the previous example.
Table I shows results obtained by minimization of Jlc and
subsequent evaluation of Eq. �9�. We checked also the opti-
mal solution by further optimization of the full cost func-
tional �9�. Its value remains essentially the same which con-
firms the independence of the solution from the details of the
reservoir properties. We have, in any case, Ju�10−4–10−7.
In Table I we employ the solution with �=0 as a reference,
which provides a minimum for Eq. �10� without the dissipa-
tor. Even if we cannot realize the trajectory �44� exactly, the
results are comparable with the ones in Fig. 3, but we cannot
expect a convergence behavior J→0 for n→� as before.

Finally in Fig. 5 we summarize typical numerical results.
Reference solution and optimal control fields are plotted in
�a� and �b� for both qubits, respectively. In �c� we show the
dependence of the cost functional on bath temperature. As
one expects the quality of the solution decreases with in-
creasing temperature. In part �d� we present the time evolu-
tion of the diagonal elements of the density matrix for a
specific input state under the optimal control fields. Rapid
oscillations are the consequence of the high-field strengths
and document the strategy of Eq. �39�.

D. Conclusions and relevance to experiment

Various other qubit-qubit coupling models have been dis-
cussed in the literature such as13,31

Hqq�t� = f�t��z � �z, �53�

Hqq�t� = f�t���+
� �− + �−

� �+� . �54�

Here we use ��= ��x� i�y� /2. As long as dissipation is
weak, the presented strategy for controlling quantum gates is
applicable. Moreover, if the experimental situation is such
that the dissipationless system allows generation of the target
operation, then one can find optimal solutions in the pro-

FIG. 4. �Color online� Control fields for both qubits. �a� Qubit 1
and qubit-qubit interaction. �b� Qubit 2 for n=8 and 0 for a target
time tf =0.5 ns corresponding to the static field �energy� �stat

�32 �eV.

TABLE I. Realization of the CNOT gate with limited control
cost functional �9�.

n /�stat��eV� 5/20 10/40 Ref. sol. ��=0�

J �two baths� 0.117 0.010 0.150

J �one bath� 0.182 0.017 0.216
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posed fashion. Furthermore, if the qubit-qubit coupling is of
Heisenberg type with a control field, which is determined �up
to a constant factor� by the four single-qubit control fields
only, one’s ability to combat dephasing is severely limited.
Hence design of multiqubit systems that do not suffer from
this restriction is desirable.

If one describes the relaxation by fixed rates, for example
within a Lindblad equation, one loses the control-field de-
pendence of the effective subsystem-environment interaction
expressed in Eq. �39� and, as a consequence, loses the con-
vergence property �43�. This demonstrates the importance of
a microscopic modeling of the system bath interaction for the
theorist. For the experimentalist it implies the need for con-
trol fields which are applicable at a sufficiently short-time
scale and strength such that the effective quantum
subsystem-bath interaction can be manipulated. Furthermore,
this analysis has shown that, for “reasonable” quantum gate
realizations with weak dissipative effects, there exist optimal
solutions for which one can focus on the implementation of
the target unitary operation since they almost automatically

minimize dissipation. In other words, there exists a subset to
the solutions for the dissipation-free system which, in nearly
unmodified form, minimizes dissipative effects.

VI. SUMMARY

In this paper we present a general optimal control theory
for quantum subsystems based on the superoperator formal-
ism. It has an advantage over previous work; that is, it does
not require sampling over possible initial states. Thus it
avoids all the problems associated with proper selection of
this ensemble regarding relevance, orthogonality, and com-
pleteness. Applied to weakly dissipative systems, it reduces
to an earlier approach developed by us. Applied to unitary
time evolution, it reduces to standard formulations.

This approach was used to study quantum gates within a
spin-boson model for dephasing and a Heisenberg-type
qubit-qubit interaction. The dissipator was computed within
second-order perturbation theory in the spin-boson interac-
tion leading to a control-field dependence in the effective

FIG. 5. �Color online� �a� and �b� Control fields for the qubits for the CNOT gate for n=10, the optimal solution, and the unitary solution
�=0 in Eq. �52�. �c� shows the cost functional J for different inverse temperatures �, where �=1 corresponds to T=7.6 mK. Gray �light
gray� bars for one bath and red �dark gray� bars for two baths. In �d� we show the time evolution of the initial state ��0�= �4��4� under the
optimal Hamiltonian with n=10. The rapid oscillations demonstrate clearly the optimization strategy �39�. The purity Tr���t�2� remains
nearly constant.
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subsystem-bath interaction, which we show to be essential
for an efficient suppression of dissipative effects. Focusing
on solid-state-based double-qubit systems, in particular
SQUID-based implementations, we are able to identify a
decoherence-free subspace for the superoperator. In an ideal
situation where each of the two-qubit control fields and the
qubit-qubit interaction can be controlled independently and
the control-field shapes are unlimited, one is able to make
decoherence �dephasing� arbitrarily small for arbitrary gate
operation. We demonstrate this numerically for the CNOT
gate.

For such an ideal model we presented optimal solutions
which are independent of the spectral function, independent
of the number of uncorrelated baths, independent of bath
temperature, and for which all four gate quantifiers take the
prescribed ideal values. In the realistic situation of current
SQUID-based qubit designs, where the qubit-qubit coupling
cannot be controlled independently from the single-qubit
control fields, one’s control of dephasing effects is clearly
reduced; however, we are able to present a family of exact
solutions for the unitary problem that lies very close to op-
timal solutions for the dissipative quantum gate. Using real-
istic control field characteristics from experiment, we arrive
at optimized gate operations which deviate from the desired
operation by a few percent in the cost functional, depending
on bath temperature, corresponding to a predicted gate fidel-
ity of clearly better than 90%.
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APPENDIX A: PERTURBATION THEORY FOR THE
EVOLUTION SUPEROPERATOR

In this appendix we outline the derivation of first-order
perturbation theory for the time-evolution superoperator and
a general dissipation superoperator Dijmn�t�. We start with
Eq. �31�. The zeroth-order superoperator Xijrs

�0� �t�
=Uir�t�Usj

† �t� is an exact solution of Eq. �31� without dissi-
pator. We set Xijrs

�1� �t�=Xijrs
�0� �t�+�Xijrs�t� and obtain for the

deviation �Xijrs�t� the equation

�Ẋijrs�t� = −
i

�
Lijmn�t��Xmnrs�t� − Dijmn�t�Xmnrs

�0� �t� .

�A1�

Here we have neglected the term Dijmn�t��Xmnrs�t� because it
is quadratically in the dissipator �the coupling strength 
�. To
solve this system of differential equations we make the an-
satz

�Xijrs�t� = Xijmn
�0� �t��X̃mnrs�t� . �A2�

We eliminate the term containing Lijmn�t� and remain with
the equation

Xijmn
�0� �t��Ẋ̃mnrs�t� = − Dijmn�t�Xmnrs

�0� �t� . �A3�

Furthermore, using the orthonormality

Xijmn
�0� �t�X jilk

�0� �t� = �km�nl �A4�

we can isolate ��̇̃�t�. After integration and insertion into Eq.
�A2� we obtain

�Xijrs�t� = − Xijmn
�0� �t��

0

t

dt�Dklpq�t���pqrs
�0� �t��Xlkmn

�0� �t�� .

�A5�

This result is quite general. It is valid for a time-dependent
relaxation tensor as well as for a dissipator described by
fixed rates. From this expression one obtains, using the
Cauchy-Schwarz inequality,


��
2 � �
i,j,r,s

���ijrs�tf��2

� tf �
i,j,r,s

�
0

tf

�Dijrs�t���2dt�

� tf�
0

tf


D�t��
2dt�. �A6�

For X�0��tf�=XT, this inequality gives

J � tf�
0

tf


D�t��
2dt�. �A7�

Given the dissipator superoperator this relation gives an up-
per limit for dissipative effects to the superoperator cost
functional and, hence, a measure for the maximum fidelity
loss due to dissipation that any unitary solution for the ideal
quantum system can suffer. We also remark that this result
does not depend on the target operator XT.

APPENDIX B: DECOHERENCE FUNCTION

The intrinsic properties of decoherence of an open quan-
tum system are expressed in terms of the decoherence func-
tion. We define the decoherence function by

FIG. 6. �Color online� Decay rate ��t� defined by Eq. �B1�. The
blue �dark gray� solid line is the exact function and the cyan �light
gray� dotted line corresponds to the approximation. The inset shows
the rates for two different temperatures at longer �Markovian� time
scales �thermal regime�. Parameters: ���c=20 and 
=10−3.
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��t� ª �
0

t

�C�t − t�� + C��t − t���dt�, �B1�

where C�t− t��, in turn, is defined in Eq. �20�. Using these
definitions, one obtains, for a subsystem with H�t�=0, the
decay rates for the off-diagonal elements of its density ma-
trix ��t�. For example, one obtains the equations �̇12�t�
=−2��t��12�t� for the two-level system, �̇14�t�=−4��t��14�t�
for two qubits coupled to two identical uncorrelated baths,
and �̇14�t�=−8��t��14�t� if two qubits are coupled to one
common bath. Figure 6 shows the decoherence function and

its form when eight Laguerre polynomials are used to ap-
proximate C�t− t��. Evaluation of the integral �B1� for an
Ohmic spectrum �Eq. �21�� gives a decoherence function

��t� = −
2
�c

2t

1 + ��ct�2 +
4


��
Im���1 + i�ct

���c
�� . �B2�

In the Markovian limit �ct→�, we obtain a time-
independent rate �see the inset of Fig. 6�

�� =
2
�

��
. �B3�
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